Algorithms, Complexity, Verification: From Cook and Karp to Vardi; or, a Brief Glimpse of the Skolem Landscape

Joël Ouaknine

Max Planck Institute for Software Systems

Vardifest, FLoC'22, Haifa July 2022

"Tractable Problems \equiv Polynomial Time"

In contrast to popular belief, proving termination is not always impossible.

BY BYRON COOK, ANDREAS PODELSKI, AND ANDREY RYBALCHENKO

Proving Program Termination

"Any verification problem worth its salt is at least PSPACE-hard!"

Moshe Y. Vardi

$$x := 1;$$

 $y := 0;$
 $z := 0;$
while $x \neq 0$ do
 $x := 2x + y;$
 $y := y + 3 - z;$
 $z := -4z + 6;$

$$x := 1;$$

 $y := 0;$
 $z := 0;$
while $x \neq 0$ do
 $x := 2x + y;$
 $y := y + 3 - z;$
 $z := -4z + 6;$

$$x := 1;$$

 $y := 0;$
 $z := 0;$
while $x \neq 0$ do
 $x := 2x + y;$
 $y := y + 3 - z;$
 $z := -4z + 6;$

f x:=f a;while $x_1\geq 0$ do f x:=f Mx;

$$x := 1;$$

 $y := 0;$
 $z := 0;$
while $x \neq 0$ do
 $x := 2x + y;$
 $y := y + 3 - z;$
 $z := -4z + 6;$

Skolem Problem:

 $egin{aligned} \mathbf{x} &:= \mathbf{a}; \ ext{while} & x_1
eq 0 & ext{do} \ & \mathbf{x} &:= \mathbf{M}\mathbf{x}; \end{aligned}$

f x:=f a;while $x_1\geq 0$ do f x:=f Mx;

$$x := 1;$$

 $y := 0;$
 $z := 0;$
while $x \neq 0$ do
 $x := 2x + y;$
 $y := y + 3 - z;$
 $z := -4z + 6;$

Skolem Problem:

 $egin{aligned} \mathbf{x} &:= \mathbf{a}; \ ext{while} & x_1
eq 0 & ext{do} \ & \mathbf{x} &:= \mathbf{M}\mathbf{x}; \end{aligned}$

Positivity Problem:

 $f{x}:=f{a};$ while $x_1\geq 0$ do $f{x}:=f{M}f{x};$

Skolem and Positivity: Open for About 90 Years!

"It is faintly outrageous that this problem is still open; it is saying that we do not know how to decide the Halting Problem even for 'linear' automata!"

Terence Tao

Skolem and Positivity: Open for About 90 Years!

"It is faintly outrageous that this problem is still open; it is saying that we do not know how to decide the Halting Problem even for 'linear' automata!"

Terence Tao

"A mathematical embarrassment . . . "

"Arguably, by some distance, the most prominent problem whose decidability status is currently unknown."

Richard Lipton

2015: "The jury is still out"

2015: "The jury is still out \dots "

2017: "Hmm, we need one of your results! - How about writing a paper together??"

2015: "The jury is still out"

2017: "Hmm, we need one of your results! - How about writing a paper together??"

⇒ Sequential Relational Decomposition LICS 2018 / LMCS 2022

2015: "The jury is still out"

2017: "Hmm, we need one of your results! - How about writing a paper together??"

⇒ Sequential Relational Decomposition LICS 2018 / LMCS 2022

we are now in a position to proceed with our equivalence:

Theorem 5.11. EBP is Equivalent to Positivity.

Proof. We first show that Positivity reduces to EBP. Let $\langle u_n \rangle_{-\infty}^{\infty}$ be an LRS of order d: we

Very nice — but why should *you* care??

You don't have to be a complexity theorist to make use of NP-completenss or SAT solvers!

You don't have to be a complexity theorist to make use of NP-completenss or SAT solvers!

In the world of Verification:

$$\begin{array}{rcl} \mathsf{Skolem} &\approx & \mathsf{NP} \\ \mathsf{Positivity} &\approx & \mathsf{PSPACE} \end{array}$$

J. Piribauer & C. Baier @ ICALP 2020

lem-hardness and saturation points in Markov decision processes				
S	lummany			
	Junnary			
1	optimization problem on	threshold problem	exponential-time	
	MDPs	Skolem-hard	algorithm using a	
		(Positivity-hard) for	saturation point for	
1	partial SSPP	weights in $\mathbb Z$	weights in ℕ	
			[Chen et al., 2013]	
	conditional SSPP	weights in $\mathbb Z$	weights in ℕ	
			[Baier et al., 2017]	
	conditional value-at-risk	weights in $\mathbb Z$	weights in ℕ	
	for the classical SSPP			
	long-run probability	regular co-safety	constrained reachability	
		properties	$m{a} { m U} m{b}$ [Baier, Bertrand,	
		- 1	Piribauer, Sankur, 2019]	
	model checking of	$\Pr_{\mathcal{M}}^{\max}(G_{\inf}^{>v}(\varphi)) = 1?$	$\Pr_{\mathcal{M}}^{\max}(G_{\inf}^{>v}(a \cup b)) = 1?$	
	frequency-LTL	for an LTL-formula $arphi$		

R. Majumdar, M. Salamati, S. Soudjani @ ICALP 2020

G. Barthe, C. Jacomme, S. Kremer @ LICS 2020

B6.A - Universal equivalence and majority of probabilistic programs over finite fields

Probabilistic Programs over finite fields

Our contributions

 $\frac{\mathsf{INDEP}_q \Leftrightarrow \mathsf{EQUIV}_q}{\mathsf{NI}-\mathsf{EQUIV}_q} \Leftrightarrow \mathsf{EQUIV}_q$

Q

		EQUIV _x	$NI - MAJ_x$	MAJ_x	
	x = q	$coNP^{C_{=}P}$ -complete	PP-complete	coNP ^{PP} -complete	
	$x = q^{\infty}$	2 — EXP coNP ^{C_P} -hard	$\leq_{EXP} POSITIVITY$?	
l 🌒 3:05	/ 23:35				E 🦑 🕂

Wednesday 16h10-17h40: Contributed talks II Skolem Problem (Amphitheatre 2A)

- Joris Nieuwveld: Progress on the Skolem Problem
- George Kenison: On the Skolem Problem for Reversible Sequences
- Arka Ghosh: Orbit-Finite Systems of Linear Equations
- James Worrell: The Pseudo-Reachability Problem for Linear Dynamical Systems
- ▶ Isa Vialard: On the Cartesian Product of Well-Orderings
- ► Edon Kelmendi: Computing the Density of the Positivity Set for Linear Recurrence Sequences
- Klara Nosan: The Membership Problem for
 Hypergeometric Sequences with Rational Parameters
- Nikhil Balaji: Identity Testing for Radical Expressions

The Skolem Landscape

The Skolem Landscape

SKOLEM

simple

Decidable (subject to Skolem Conjecture & p-adic Schanuel Conjecture)

Independent correctness certificates non-simple

? (watch this space!) POSITIVITY

simple

???

non-simple

Diophantine hard!

Want more? Come to our LICS talk, Tuesday 10am!

simple

Decidable (subject to Skolem Conjecture & p-adic Schanuel Conjecture)

Independent correctness certificates non-simple

? (watch this space!) POSITIVITY

simple

???

non-simple

Diophantine hard!

https://skolem.mpi-sws.org/

i skolem.mpi-sws.org

Accounts 🔿 Teams

SKOLEM: Solves the Skolem Problem for simple integer LRS

System Explanation Show/Hide

- · On the first line write the coefficients of the recurrence relation, separated by spaces.
- · On the second line write an equal number of space-separated initial values.
- · The LRS must be simple, non-degenerate, and not the zero LRS.
- The tool will output all zeros (at both positive and negative indices), along with a completeness certificate.

Input area

Auto-fill examples: Show/Hide

U ₈	u ₁	***	u_{k-1}	
wł	here			

Input Format

 $u_{n+k} \ = \ a_1 \cdot u_{n+k-1} \ + \ a_2 \cdot u_{n+k-2} \ + \ \ldots \ + \ a_k \cdot u_n$

Zero LRS Degenerate LRS Non-simple LRS Trivial Fibonacci Tribonacci Berstel sequence [1] Order 5 [3] Order 6 [3] Reversible order 8 [3]

Manual input:

6 -25 66 -120 150 -89 18 -1

0 0 -48 -120 0 520 624 -2016

Always render full LRS (otherwise restricted to 400 characters)

I solemnly swear the LRS is non-degenerate (skips degeneracy check, it will timeout or break if the LRS is degenerate!)

Factor subcases (merges subcases into single linear set, sometimes requires higher modulo classes)

- Use GCD reduction (reduces initial values by GCD)
- Use fast identification of mod-m (requires GCD reduction) (may result in non-minimal mod-m argument)

Output area

Zeros: 0, 1, 4 2cro at 0 in (0+136Z _{x0}) - p-adic non-zero in (0+136Z _{x0}) - zero at 1 in (1+136Z) - substance zero in (16+800Z _{x0}) - m-adic non-zero in (1+680Z _{x0}) (0+5Z _{x0}) of parent) - Non-zero road 3 in (37-680Z) ((2+5Z) of parent) - Non-zero road 3 in (37-680Z) ((2+5Z) of parent) - Non-zero road 3 in (34-680Z) ((2+5Z) of parent) - Non-zero road 3 in (34-680Z) ((2+5Z) of parent)	LBS: u_c/m LBS: u_c/m LBS: u_c/m -2710311017269744858635285589463478481569558698641913636334545467546976917 1+ -30675171942553866846449276133266958239718758136529439512475357872393244951 -1306664649156411899153199426519447202492215994469667435547938656677820808521 -1412695656260680136344679131202660729809157566422391263175639648254931 -1412695656260801363446791311202660729809157566422339126317569423398115701565461869437273467822 1966556894732071385698429142237569423398115701565461869437273467822
 Non-zero mod 7 in (2+ 1367) 	5} +

△ ☆ ●